Favorite posts and series

C++ 11 14 17 20macOS SetupAzure DevOps (Python Wheels) • Conda-Forge ROOTCLI11GooFitPython BindingsPython 3SSH

My books and workshops

Modern CMakeCMake WorkshopComputational Physics Class

My projects

boost-histogramCLI11PlumbumGooFitParticleDecayLanguageConda-Forge ROOT

ROOT Install Options

New Conda Forge package of ROOT for Unix and more options

For particle physicists, ROOT is one of the most important toolkits around. It is a huge suite of tools that predates the C++ standard library, and has almost anything a particle physicist could want. It has driven developments in other areas too. ROOT’s current C++ interpreter, CLING, is the most powerful C++ interpreter available and is used by the Xeus project for Jupyter. The Python work has helped PyPy, with CPPYY also coming from ROOT. However, due to the size, complexity, and age of some parts of ROOT, it can be a bit challenging to install; and it is even more challenging when you want it to talk to Python. I would like to point to the brand-new Conda-Forge ROOT package for Linux and macOS, and point out a few other options for macOS installs. Note for Windows users: Due to the fact that ROOT expects the type long to match the system pointer size, 64-bit Windows cannot be supported for quite some time. While you can use it in 32 bit form, this is generally impossible to connect to Python, which usually will be a 64-bit build.

[Read More]

Histogram Speeds in Python

Let’s compare several ways of making Histograms. I’m going to assume you would like to end up with a nice OO histogram interface, so all the 2D methods will fill a Physt histogram. We will be using a 2 x 1,000,000 element array and filling a 2D histogram, or 10,000,000 elemends in a 1D histogram. Binnings are regular.

1D 10,000,000 item histogram

Example KNL MBP X24
Numpy: histogram 704 ms 147 ms 114 ms
Numpy: bincount 432 ms 110 ms 117 ms
fast-histogram 337 ms 45.9 ms 45.7 ms
Numba 312 ms 58.8 ms 60.7 ms

2D 1,000,000 item histogram

Example KNL MBP X24
Physt 1.21 s 293 ms 246 ms
Numpy: histogram2d 456 ms 114 ms 88.3 ms
Numpy: add.at 247 ms 62.7 ms 49.7 ms
Numpy: bincount 81.7 ms 23.3 ms 20.3 ms
fast-histogram 53.7 ms 10.4 ms 7.31 ms
fast-hist threaded 0.5 (6) 62.5 ms 9.78 ms (6) 15.4 ms
fast-hist threaded (m) 62.3 ms 4.89 ms 3.71 ms
Numba 41.8 ms 10.2 ms 9.73 ms
Numba threaded (6) 49.2 ms 4.23 ms (6) 4.12 ms
Cython 112 ms 12.2 ms 11.2 ms
Cython threaded (6) 128 ms 5.68 ms (8) 4.89 ms
PyBind11 sequential 93.9 ms 9.20 ms 17.8 ms
PyBind11 OpenMP atomic 4.06 ms 6.87 ms 1.91 ms
PyBind11 C++11 atomic (32) 10.7 ms 7.08 ms (48) 2.65 ms
PyBind11 C++11 merge (32) 23.0 ms 6.03 ms (48) 4.79 ms
PyBind11 OpenMP merge 8.74 ms 5.04 ms 1.79 ms
[Read More]

Announcing CLI11 1.6

CLI11, a powerful library for writing beautiful command line interfaces in C++11, has been updated to 1.6, the largest update ever. CLI11 output is more customizable than ever, and has a better functionality separation under the hood.

CLI11 has had the formatting system completely redesigned, with minor or complete customization of the output possible. Configuration files reading and writing also can be configured; a new example with json instead of ini formatting is included. Validators (finally) have custom help output, as well. Many odd corner cases have been made possible, such as interleaving options.

[Read More]

CMake 3.11

CMake 3.11 was just released; this is particularly exciting release for CMake. I’d like to give a quick and friendly introduction to the new features that might make the largest difference for CMake users.

[Read More]